B i e b ot g 1

S e AT L ey,

PB85-152197

¥ Design of Shear Deformable Antisymmetric

Angle-Ply Laminates to Maximize the

Fundamental Frequency ang Frequency Separation

Naticnal Research Inst. for
Mathematical Sciences, Pretoria (South Africa)

Dec 83

9951214 (

} . CENGE
~opRTMENT OF DEFEF
DEPARTME CVALUATION CENTER
07801

PLASTICS TECHNICAL .
ARRADCOM, DOVER, N. J.

U.S. Department of Commerce
National Ial information Service

[




DISCLAIMER NOTICE

R

THIS DOCUMENT IS BEST
QUALITY AVAILABLE. THE
COPY FURNISHED TO DTIC
CONTAINED A SIGNIFICANT
NUMBER OF PAGES WHICH DO
NOT REPRODUCE LEGIBLY.




x*MSG DI4 DROLS PROCESSING-LAST INPUT IGNORED

*MSG DI4 DROLS PROCESSING - LAST INPUT IGNORED

*MSG DI4 DROLS PROCESSING-LAST INPUT IGNORED

- OF e P

—— ***¥DTIC DOES NOT HAVE THIS ITEMxxx

== 1 - AD NUMBER: D439484 ‘

-- & - UNCLASSIFIED TITLE: DESIGN OF SHEAR DEFORMABLE ANTISYMMETRIC
Bt ANGLE-PLY LAMINATES TO MAXIMIZE THE FUNDAMENTAL FREQUENCY AND
R FREQUENCY SEPARATION, :

--10 - PERSONAL AUTHORS: ADALI,S.

--11 - REPORT DATE: DEC , 1983

--12 - PAGINATION: 38P

-=14 - REPORT NUMBER: CSIR-TWISK-333 .

--20 = REPORT CLASSIFICATION: UNCLASSIFIED

--21 = SUPPLEMENTARY NOTE: PREFARED FOR NATIONAL RESEARCH INSTITUTE
- FOR MATHEMATICAL SCIENCES, PRETORIA, (SOUTH AFRICA).

--22 -~ LIMITATIONS (ALPHA): APPROVED FOR PUBLIC RELEASE; DISTRIBUTION
- UNLIMITED AHA&-AEthﬁJ o S e e S R S AT SR A SA TR w1V R e
~=33 - LIMITATION CODES 1 ’ ;

|~ KKK




BIBLIOGRAPHIC INFORMATION

PB85-152197

Design of Shear Deformable Antisymmetric Angle-Ply Laminates
to Maximize the Fundamental Frequency and Frequency
Separation.

Dec 83
by S. Adali.

PERFORMER: National Research Inst, for Mathematical
Sciences, Pretoria (South Africa).
CSIR~TWISK~333

An antisymmetrically laminated angle-ply plate is optimized
with the objectives of maximizing the fundamental
eigenfrequency and the distance between two consecutive
natural frequencies. The formulation includes the
contribution of the shear deformation, but neglects the
in-plane and rotary inertias. The design variables are the
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lower bound constraints on higher order frequencies.
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high modulus fibre reinforced materials, and the effects of
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are investigated. It is shown that the design variables may
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classical plate theory leads to erroneous results in optimal

KEYWORDS: *Laminates, *Foreign technology. Py

r .

Available from the National Technical Information Service,
SPRINGFIELD, VA, 22161

PRICE CODE: PC EQ04/MF EO1

i Rist

P

l




TWISK 333

Design of shear deformable antisymmetric angle-ply laminates
to maximize the fundamental frequency and frequency

separation
by
S Adali
DTIC QUALITY INSPECTED &

REPRODUCED BY

NATIONAL TECHNICAL

INFORMATION SERVICE

US. DEPARTMENT OF COMMERCE
SPRINGFIELD, VA. 221€]

Tegnlese Verslag Technical Report

NASIONALE NAVORSINGSINSTITUUT VIR WISKUNDIGE WETENSKAPPE
NATIONAL RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES
WNNR CSIR

.. Desember
TWISK 333, 26 p. + 6 figs., Pretoria D ber 1983

o s R 20




TWISK 333

Design of shear deformable antisymmetric angle-ply laminates

to maximize the fundamental frequency and frequency
separation

by
S Adali

Tegnlese Verslag Technical Report
NASIONALE NAVORSINGSINSTITUUT VIR WISKUNDIGE WETENSKAPPE

NATIONAL RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES
WNNR CSIR

.. Desember
TWISK 333,26 p. + 6 figs., Pretoria December 1983




NRIMS Technica} Report TWIsk 333
National Research Institute for Mathematic,
CSIR

P 0 Box 395
PRETORIA
0001

Preprint. Not for revieyw.

Printed in the

Republic of South Africa

by the Graphic Arts Division of the CSIR
PRETORIA

al Sciences




AR T Bt v gy

N < s ey s

:
j
|
i
-DESIGN OF SsHEAR DEFORMABLE  ANTISYMMETRIC ANGLE-PLY ,'
LAMINATES TO MAXIMIZE Tue FUNDAMENTAL  FREQUENCY :
AND  FREQUENCY SEPARATION :

|

i

{

i

S Adali
Rational Research Institute for Mathematical
Sciences of the CSIR, P 0 Box 395,
PRETORIA 0601, South Africa

ABSTRACT

An antisyumetrically laminated angle-ply plate is optimized with the

objectivag of maximizing the fundamental eigenfrequency and the distance ,
between two consecutive natural frequencies. The formulation includes

the contribution of the shear deformation, but neglects the in-plane and

rotary inertias. The design variables are the fiber orientations and

the thicknesses of individual layers. The design problems are cast

into 2 mathematical programming format and solved by using a quasi-

Rewton function maximization algorithm. A penalty function method s

employed to maximize the fundamental frequency, subject to lower bound

" constraints on higher order frequencies. Numerical results are presented

for laminates constructed of high modulus fibf‘:e reinforced materials,
and the effects of various problem parameters on the efficiency of the
designs are investigated. It is shown that the design variables may
not be determined optimally if the effect of shear deformation is
neglected. Moreover, it was observed that the classical plate theory

leads to erroricous results in optimal material selection problems.
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. were included in the formulation [1]. Subsequently, the same plate

1. INTRODUCTION

Ina l;ecent article Bert and Chen [11 studied the effect of shear defor=
mation on the natural frequencies of an antisymmetric angle-ply laminate
and showed that the classical plate theory (CPT) tEI.!dS to overestimate
the ;/alues of frequencies. Specifically, rectangular plates on simple

supports were considered, and the effects of in-plane and rotary inertias

problem was also analyzed by means of a finite element method [21. fn
the present article, a number of optimal design problems for similar
structures are solved by employing the shear deformation theory (SDT)
given in [11. We neglect the effects of in-plane and rotary inertias,
which were shown to have little effect on the fundamental frequency even
in the case of relatively thick plates [11. In particular, we consider
the problems of maximizing the fundamentél frequencies of angle-ply

Taminates with and without lower bounds on higher order frequencies and

-of maximizing the distance between two consecutive frequencies.

The design variables are taken as the fiber orientations and thicknesses
of individual layers, Optimization problems are formulated as mathematical
programing problems and solved by using a quasi-Newton nonlinear function
maximization algorithm. In the constrained optimization problem, the
lower bounds on higher order frequencies are incorporated into the

formulation by means of a penalty function technique.

Optimal designs of laminated Plates were given in several studies F3-83
with respect to natural frequencies in which the effect of shear deforma=
tion was neglected. We refer the reader to {71 for works concerning the

optimization of laminates with respect to other objectives. such as
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2
buckling loads and deflections. In the case of isotropic structures,
shear deformation was taken ‘into account in the optimal thickness design
of a number of structyral elements £9-143, p these studies, it is . L
observed that the shear deformation always reduces the efficiency ;Jf a
design, the extent of which depends on the specific objective and the
structure. our results also confirm this general result. In fact, in
the case of high modulys fiber reinforced materials used in high tecﬁ=
nology applications, the decrease in efficiency is considerable. More=
over, the neglect of shear deformation may lead to designs that are only
suboptimal. Indeed, the values of optimum fiber orientations and Tayer
thicknesses depend on the side-to-thickness ratio, and Consequently SpT
and CPT yield different optimum points. CPT can even give qua]itatively
incorrect answers when chooéing a particular material to produce the most
efficient design. Indeed, ¢pT indicates that the efficiency depends pn‘
the ratio of transversé and langitudinal Young's moduli in a monotonous
fashion. When shear deformation is taken into account, this relation is
o longer monotonous and it has a maximm point, Thus, the problem of

optimal material selection can only be handled by SoT.

Increasing the distance between two consecutive eigenfrequencies is a

practical design consideration for vibrating structures. 1t provides

large gaps between natural frequencies, and thereby the possibility of - . o
resonance due -to externa.l excitations is reduced. |[n spite of the

practical advantages, optimal frequency separation problems received

relatively little attention in literature, Bronowicki et al [15] gave

the design of ring-stiffened cylindrical shells for maximizing the

separation between the Towest two natural frequencies, Pappas [16]

studied the same problem with 3 different optimization algorithm, Designs
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for the maximum separation of frequencies were obtained for isotropic
beams by Olhoff [17,183 by maximizing the higher order frequencies. In

the case of composite structures, there does not seem to exist any study

L AL AN S i S s ke e 1 e

on this problem. The present article gives designs for maximum distance

between the lowest and the next lowest two natural frequencies, In

IERRIARIEN

[15,17,181, it was observed that the higher order frequencies approach
each other when the structure is designed with respect to frequency
separation. The same phenomenon is also observed in the present case and
seems to be a general characteristics of such designs. We offer an
explanation for this in terms of the topology of the frequency surfaces

in the design space.

2. PROBLEM FORMULATION

We consider a simply supported rectangular plate of Tength a, width b,
thickness h and mass density p. The plate is composed of an even number
of orthotropic layers of thickness "k' the fibers of which are oriented
alternately at angles Bk ano -ee and are placed antisymmetrically with
respect to the middle surface, Plates with these characteristics are
conmonly known as antisymmetric angle-ply laminates 11,2,7,8]. The
equations of motion, which include the effect of shear deformation, were
given in {13 for freely vibrating angle-ply laminates. We adopt the same
‘formulation in the present study but neglect the effects of in-plane and
rotary inertias. The equaticns are presented in the Appendix. We obtain
a non-dimensionél form of these equations by introducing the following

dimensionless quantities:

X =Xa,y=VY, u=U/a, v= V/b, w = W/a
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_ 2 - 3
, 35 = A”/ETh, bij = Bij/ETh . dij = Dij/ETh
- (1)
AU ‘ r = a/b, p = ash, hy = H/h,

vhere i and j are integers and k refers to the Tayer number. In equation

(1), X and Y are Cartesian coordinates parallel to the respective plate

1 edges; U, ¥, W are the displacement components in the directions of the

XYZ system; Aij’ sij and Dij are the laminate stiffresses given by

hiz (k) ,

where le‘;) denotes the plane stress reduced stiffness components of the

k-th layer given in the Appendix. ET is the transverse modulus of
| elasticity, but could be replaced by any reference modulus. Introducing
(1) into (A1), we obtain the following non-dimensional system of coupled

partial differential equationc governing the free vibration of the shear

deformable laminate:

2 -1
Bpatax t BT Uy (a12+a56)vxy *hyp ¥

XX
(3)
2 -1 -1 _
+ b%r p vyy + Zblsrp oxy =0
(a4 Ju_+a v +a v +2b ply
127%8" "xy 66 XX 22'yy 26 Xy
(4)
-1 -1 -1 _
. . + blGr P d))(x + b?Erp 'b_yy - 0
2 2 ~2 2
k5 ass"xx + k,' a,,r wyy + k,‘ a,,r Yy
) (5)

2 o a2p-t
+ ks L ox =pa ET "tt_
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-1 2, -1 -1 2
Bi6P TUxx * byer’p Upy * 2bygp Yy - kidyy vy

k’a vy (6)

-2 2 -2
$ AP T Tyt dyrp Yyy = Kuy

-2
+ (dn#d“)rp Qxy =0

-1 =1 -1 -1
merp uxy+ blsr PVt bzem Y

yy
2 -2 -2
“k5agey + (dy4d c)rp Yy * P T 4y n
2 -2 2 _
+d66rp °yy'k5355°'0

where & and ¥ are the slopes in xz and yz planes respectively; kq and ks

are shear correction coefficients and t denotes time,

We consider the same simply supported plate boundary conditions as the

ones given in [1]. In terms of dimensionless quantities, these are

u(0.y) = 3{Ly) = 0, Ne(x,0) = N(x,1)
Ne(0,y) = He(L,y) = 0, v{x,0) = v(x,1)
w{0.y) = w(l,y) = w(x,0) = w(x,1) = 0
H,(0.y) = M (Ly) = 1,(x,0) = My(x,1) = 0
¥(0.y) = ¥(L,y) = 0, (x,0) = #(x,1) = 0

n L]
Qo Qo

where the dimensionless stress couples M, and M, and in-plane stress

resultant Ns are given By

_ -1 -1 -1
N = agglr vytru) v by p™ 8, 4 bt ¥,

- -1 -
M = bm(r ‘vxn'uy) + dup t, +drp 1 Vy (9)
H,

B -1 -1 -1
= b%(r "x""_y) + d1?p b+ d22rp

X 7)’

The objectives of the study are to maximize the fundamental eigenfrequency

2, and the distance between the consecutive natural frequencies of the

AL et e s
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'freely vibrating laminate by optimally detemining the fiber orientation
ok and the thickness hk of the k-th layer. We note that the fundamental fre=
quency Q“ was found to be equal to the frequency of the eigenmode m=1,
n =1 for all problem parameters in.the present problem. Here m and p
denote the modal wave mumbers associated with x and y divections. (Con=
sequently, 2, will be denoted by n“ in the sequel, For higt .r order
frequencies 2y, the values of m and n depend on the specific parameters.
The designs for maximm fundamental frequency are classified as ‘uncon=
strained’ or 'constrained’ depending on whether lower bounds on higher
order frequencies exist. The design prdblem of maximi‘zing the distance
between consecutive frequencies is called the maximum frequency separa-=
tion problem, Thus, we state the optimization problems as follows:

_ll_nconstraineti_Qesiqn Problem : etermine the solution of the maximization

problem

max @, k=1,2,... /2, (10)
O sy

where the design variables 0, and h; satisfy

0« n'lk < n/2 for k = L3, k1, -n/2 = Ok s 0 fork = 2,4,.,..K (11)

K

le' b=l 20, k=12, - (12)

with K denoting the total nuaber of layers,
We note that due to antisymmetry, we have o, = “O.ksy and by = hK—k&l'
As a result of these requirements and (12), we have, in effect, K/2

variables of "k and (K/2)-1 variables of hk' Thus, the total number of

effective design variables is K-}.

il

e s o s
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; Constrained Design Problem: Determine the solution of the maximization
problem
i
max Q. k=1,2,...,k/2 (13
;’ O oy
i : subject to
Ql‘ 2 rzli, 122, 4=1,2,..., (14)

where 8y and hk satisfy (11) and (12) respectively and n' denotes the
i
lrth order frequency, 'ﬁ‘ is a specified lower botnd,
i

Design for maximum frequency separation: Determine the soluticn of

maximization problem

max(n'-n,‘_l) » k=1,2,... K72, (15)
ek'hk B
where 0, and hk satisfy (11) and (12), respectively, and f denotes the
1-th order frequency, .

We observe that alt designs problems are in fact nonlinear programming
problems due to the nonlinear dependence of the eigenfrequencios on

8, and hk .

3. METHOD OF SOLUTION
— 2T DULUTION

The following set of displacement and rotation functions satisfies the

differential equations (3)-(7) and the boimdary conditions (8) (11:

u = Yn sin mwx cos any cos‘nmt
V = Von COS max sin nny cos Tont
W sin mix sin nmy cos nmnt
Y= Yon Sin mex cos nny cos 2t
¢ = Py €OS mMax sin nny cos 2ot

e

vt
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where nmn is the frequency of the eigenmode (m,n),

Insertion of (16) into {3)~(?) leads to a set of linear homogeneous

algebraic equations of the form:
=0 (17)

= v (]
where § tYn Vion ey Yoo ¢l and C s the syg symmetric matrix, the

eleqents of which are given by

.. 2. 2.2 ..
‘17" 8 e By, - COPAL I I

-1,2

. s eb gl 7, o .. -1
Gl =0y = -b o7 P2l PR €, By 8

(K] 2
€ ® - a“r'?a7-a223?. 30 ¢, = 2b, plag
€ v - bmr"p'lq? - b%rp"ﬂz.

e k;’,ﬁ',"? - ksalmr)n? + p-?“’:m
Can = - k,fa,‘,lrﬂ. 35 7 - kg"ss"
Cyy.* = dm,p-?"z - d”r?p"a2-k:a,m
Cy = - (dwodm,_)rp'zrxn

»

-2 9 et D 2
55 % 4 p 77 - deet 787 - kdg,

where a = mn, p - nn and the dimensionless eigenfmquency Y Telates

to ﬂm by the formula

W * 0 a"Q:n(EIhz’ (19)

.' A nontrivial solution of (17} exists if

det € =, (20)

which leads to an explicit expression for W Viz.
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20 2
Wiy =P '3; (kgagga (FygeafF, ) + k:awrs(Fau«rrBFss)) 21
where FU denotes the cofactor of the element C”. We note that an explicit
expression for Wen €20 be obtained due to the fact that the in-plane
and rotary inertias are neglected. Otherwise the determinental equation

(20) becomes a fifth order polynomial in uﬁn t1.

Maximization of the expression (21) with m=n=1 and with respect to the
desfign variables 9.‘ and hk’ which are subject to the constraints (11)
and (12), leads to the solution of the unconstrained design problem (10).
In the case of the constrained design, the fundsmental frequency "y is
to be maximized subject to constraints :.-li z a’p'i' 4 > 2, i=1,2,... on
£4-th order frequencies m'i. This type of problem was avlready treated
by Adali [8,19] in the context of laminated plates and vibrating beams
by employing a penalty function method. The procedure converts the con=
strained optimization problem into an unconstrained one by treating the
programming problesm

1
b
=1

mx  f{uw

l -
—max [0, o, =, 3} , 22)
00 by €4 ooy (

+
1 i
where € > 0 are specified small constants. For further details on the

penalty function method we refer the reader to 1193, Solution of problem
(22}, subject to (11) and (12) prevides the constrained optimal design

of the lamir_xate.

Ne note that both the constrained design problem and the maxisum frequency

separation problem involve the evaluvation of higher order frequencies.

 Although the fundamental frequency is given by "y for all the problem

parameters, the modal wave numbers m and n depend on the specific problem
parameters in the rase of higher order frequencies. We compute the ¢-th

order frequency wy from

vg = min w_ subject to s 2Py " {23)
m,n
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which constitutes a discrete minimization problem vver the integers m and

4. DESIGN FOR MAXIMUM FUNDAMERTAL FREQUENCY
= T TERAL FREQUENCY
°

In this section, numerical results for the optimal design of an angle-ply
laminate for maximum @,y 3re given, and the effect of various problem
parameters on the efficiency of a design is investigated. We treat two
different kinds of graphite epoxy plastic with material constants given

by
Mgterial I: EL/ET = 40.0, GLY/ET = 0.6

G!Z/Et = 0.5, Yy = 0.25
and

Material 1] EL/ET = 5.0, GLT/Er = 0.5
GIZ/EI = 0.2, V1 = 0.25.

The shear coefficients are taken as kz = k: = 5/6.

The efficiency of an optimal design fs assessed by comparing it with the
corresponding standard plate, which we define to be composed of layers
of equal thickness with the fibers oriented alternately at 45 ang -45

degrees. The efficiency index is defined as

Egp = ‘m(("'op/-'}‘s)' 1), (24)

which gives the percent increase in the fundamental frequency "bp of the
optimal plate as cempared to the fundamental frequency g Of the standard

plate.

Fig.1 gives the efficiency curves plotted -against the aspect ratio a/b
for four-layered laminatos of material 1, optimized with respect to fiber

orientations only. The results at 3/b = 0 refer to a plate strip, and
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those for a/h = = are obtained by empléying the classical plate theory.
We observe that the effect of shear deformation is to decrease the effi-
ciency of the design and this effect becomes more pronounced as the a/hv
ratio becomes smaller. Exactly the same situation was observed in the

optimal thickness design of one-dimensional structures that included shear

" deformation [9-121.

Fig.2 gives the efficiency curves for laminates made of material II with
the same problem parameters as in Fig.1. A comparison of Figs.l and 2
indicates that material I produces less efficient designs for a/h < 10
when a/b < 1 and for a/h < 40 when a/b > 1 than material I, but this {s
not the case for a/h = ». An important implication of this observation
is that an assessment of efficiency of plates constructed from different
materials would be completely misleading if the shear deformation were

neglected.

Tables 1 and 2 provide the values of fundamental frequencies and fiber
orientations of optimally designed laminates made of materials I and Il
respectively. Ve note that the results for optimum oi's are given for
only one-half of the laminates because of the antisymmetry. Table 1 in=
dicates that the fiber orientations of optima) plates depend on thg a/h
ratio, and consequ,antly SDT and CPT yield different results. We observe
from Tébie 2 that these differences are less pronounced for material I1.
Thus the extent of the difference in optimum Oi’s obtained by SDP and CPT

is closely related to the material properties and mostly to EL/F'T ratio.

Néxt, we investiyate the amount of decrease in the maximum fundamental
frequencies of optimal designs as a result of taking shear deformation
into account. Let tgp and ep denole the fundamental frectencies of op=
timal laminates obtained by SDT and CPT respectively. Then, the percent

decrease in efficiency as a result of employing SD1 rather than CPT is




given by

The curves of ¢

for four-layered laminates optimized with respect to 9

Dot

12

= 100(1 - gy / wgp).

e D AT 4 o e

(25)

off plotted against the aspect ratio are given in Fig.3

We observe that

the efficiencies obtained from CPT become less accurate as a/h decreases

and/or a/b increases.

Moreover, the material properties have relatively

small effect on the final result,

In the above results,

orientations only.
the design variables is studied in Fig.4

the efficiencies of optimal plates with design variables [{:]

the laminates were optimized with respect to fiber

The effect of including the layer thicknesses among
s which shous the differences in

i’h ) and (0;).

In the particular case of four-layered plates considered in Fig.4, the

specific design variables are (Oi,oz.hl) and (61.09).

rences in the efficiencies are given by

where ué;) and wy

with three and two design variables respectively,

100(..‘(3) - m(?))/ul ,

The percent diffe=

( ) denote fundamental frequencies of optima) laminates

We observe that the

optimum layer thickness becomes most effective when aspect ratios are

close to unity,

and moreover the increase in the efficiency depends heavily

on a/h ratio. Another interesting conclusion is that the optimum deter=

mination of the layer thickness increases the efficiency of a laminate for

aspect ratios where CPT would indicate no change.

More specifically cpT

shows no increase in the efficiency of a design as a result of including

the layer thickness among the design variables when 0, 55 > a/b > 1.7,

Table 3 gives the values of the maximum oy

and optimum o .0?,h (=z(3)=-2(1))

for various a/h and a/b ratios and for laminates made of material I. A

tomparison bf Tables | and 3 indicates that optimum vaiies of o

i depend on
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the number of design variables.

Fig.5 gives the curves of efficiency plotted against a/h for laminates
with two, four and six layers.  We observe that the efficiency drops as
the number of layers increases. Moreover, the efficiencies of Haterials
I and I1 may be greater or less than one another depending on a/h as
illustrated in the case of four-layered laminates. Thus we again come
to the conclusion that a comparison of the efficiencies of different ma=
terials by CPT alone is tikely to give incorrect results for thick lami=

nates.

The effect of the modulus ratio EL/ET on the efficiency is specifically
investigated in Fig.6, where the efficiency curves are plotted against
EL/ET for laminates optimized with respect to 9; and with GLT/ET = 0.6,
GTZ/ET = 0.5, Vit s 0.25, r=2 and number of layers 4. We observe that
the efficiency decreases after a certain value of E.'L/E.r as EI./ET increases
when a/h < 40, On the oiher hand CPT indicates a steady increase in
efficiency for the range of values of EL/ET given in Fig.6. Thus, even a
qualitative estimate based on CPT as to the efficiency of laminates made
of different materials will be incorrect. Frdm Fig.6, it appears that
the effect of shear deformation increases‘ as t'l_/liT infreases, causing the
efficiency to drop after 3 certain point. The initial increase in effi=
ciency apparently occurs when the deformation due to bending only dominates

the contribution of the shear deformation.

5. CONSTRAINED OPTIMIZATION AND OPTIMAL FREQUENCY SEPARATION

In many applications, the maximization of the fundamental frequéncy may
be subjected to additional design requirements in the form of constraints
: *on higher order frequencies. Usually one or more of the higher order fre=

quencies are required to be greater than certain values. Another class

TN edi e i st
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of problems is the design of a laminate that has maximm separation between
the consecutive frequencies. The optimization technique used in the

present study can be easily extended to solve both problems.

Table 4 gives the values of the maximum fundamental frequencies with second
and third order frequencies subjected to lower bounds 5-2 and ‘-"a respecs
tively. ‘The results are given for four-layered laminates optimized with
respect to uN only, with a/h = 10.0 and a/b = 1,2. " When ':'2 = 24.0 and

5»3 =, with a/b = 1, the laminaf:e has a double eigenvalue as its second
order frequency. This situation changes when we set 47;3 = 37.0, and more=
over the mode of the third order frequency changes from (2,1) to (1,3)

as :7)3 is increased to 5!3 = 38.0. The results for r=2 indicaée that w,

and w, can be increased considerably with little effect on Wyge

Numerical results for the optimal frequency separation problem are given
in Table 5 for similar parameters. We observe that the maximizations of

W, with r=1 and R with r=1,2 lead to double eigenvalues for the

2
second and third order frequencies respectively. This may be attribuled
to the fact thét a frequency surface in the &ésign space usuélly has a
local maximum at those points where the surfaces of different eigenmodes
cross each other. Obviously these points are also those where double

eigenvalues occur. : SR

6. CONCLUSIONS

The main effect of the shear deformation on an optimally designed laminate
is to reduce its efficiercy. We note that the efficiency is defined in

comparison to the corresponding antisymmetric angle-ply laminate that has

equal thickness layers with fibers oriented at alternating angles of 4%

degrees. The efficiency decreases with decreasing side-to-thickness ratio,
as is the case in the optimal thickness design of isotropic structures F9-121.

The aspect ratio, number of Tayers and the material properties have considerable




effect on the efficlency of a design, as depicted in Figs. 1,2,5 and 6.

Comparison of results obtained by SOT and CPTvyields interesting insights
into the ways the shear deformation affocts the optimal Jaminates made

of advanced filamentary composite materials. For example, SDT and CPT
produce different values for optimum fiber orientationc and Tayer mi£k~
nesses. Thus, a design based on CPT alone could, in fact. be only subop=
timal. Deviation from the optimim increases with decreasing side-to-thicks=

ness and increasing EL/ET ratios when CPT is employed,

Furthermore, CPT gives qualitatively incorrect results when a comparison
of different composite materials is made. Indeed, CPT indicates that the
efficiency would increase with increasing &.’l_/ET ratio. Therefore, the
material with the highest EL/ET yields the most efficient design accor=
ding to CPT. 1In fact, the efficiency decreases after a certain point with
tncreasing EL/ET when the shear is taken into account. Thus, SDT indicates

an optimal EL/IET value for the maximum efficiency.

The efficiency can be increased by including the layer thicknesses among
the fiber orientations as additional design variables. This increase is
larger when the side-to-thickness ratio is high and when the aspect ratio

is close to unity, hut it becomes negligible if the aspect ratio is too
small or too large. C€PT yields misleading resuits on this aspect by indi=
cating too narrow a range for the aspect ratio around unity where optimizing

with respect to tayer thicknesses can be effective,

Constrained designs of the Taminates were obtained when lower bounds were
imposed on higher order natural frequencies. It was observed that the
imposed bounds effected the eigermode of the higher order frequencies

at the optimum point (Table 4),

Designs for optimal fréquency separation lead to double eigenvalues for

A i St B8 4 e Rt e v+

!
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higher order frequencies in many cases {Table 5). This seems to be due
to local maxima, which occur at the cross sections of surfaces formed

by different eigenmodes in the design space.
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APPENDIX

The ‘equations of motion governing the free vibrations of an antisymretric

angle-ply laminated plate are given by 13

LD=0, (A1)

where p = (U V W hy he77 is the transpose of the displacement vector and

L= [!‘kz) is the 5 by § symietric differential operator matrix, the com=

ponents of which are gfven by
2 2
Lig = Ay O + A 07, Lip = (A, + A0, Dy

2 2
Lig = 0n Ly, = (B, /m)D] + (B,g/h)0y

. 2 2
Ls = (ZBIG/h)DxDY, L = Aeelx * A,, by

Lya =00 L, = (28,./h)D,D

23 v Ly =Ly

o a? 2 _ 2 2 2
Lag = -k Agg Dy - ki A, Dy + o h by

SNTY - n? 2
Lau - ("u Auu”')DY' L35 - (ks Ass”')ox
N 22 2yp2 _ 42 2
Lyy = (Dg/n°)0y + (D, /12)0? ky A, /h

Lu = (03, + D, )/m%)0, b,
Ly = (D1i’h?)°§ + (Dc.s/hQ)Ds - ": Asslhz’

where by = 373X, by = /3y, By = 3/at.

Plane stress reduced stiifness components of the k-th l1ayer are given by
Oﬁ() TR 2% + 0, s*
ofy) - g+ 0y - 05057« g (s + ")
01(,'2() =Q, st 4 2(0,, 1 20,)s%? + Q,, ¢ (A2)
Ofls() " (Qym 0, - 20000 ¢ (o, - 0y, + 2,)s%

Og:) (0 - 0, - 200)5% 4 (n, - O + Ngg)s

)
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O'S:) = Olm C? + 055 S2
Qg:) = 0‘“‘ s? + 055 c?

Qé:) = (0114022-2012-2066)s2c?4Q66(s"+c“)_

where ¢ = cos O » s = sin Oy

U = B/ ), 0, v/ (v v )

%2 = E/(l-vqvy ), 0, = 6rz

Os = %5 = Sp» vy, = et Ev/E -

Here El;and ET denote Young's moduli in the Yongitudinal and traasverse

directions, respectively; Vit is the ratio of transverse-to-lo'ngitudinal

strain under longitudinal stress; G . and Gr, denote in-plane and thicks
LT T2

ness shear moduli respectively,
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TABLE 1: Maximum fundamental eigenfrequencies and optimm fiber orientas
tions in degrees of a four-layered angle-ply plate made of
materfal !, with bk = 0.25, k«1.2,3,4.
: 5 10 20 40 ®
ﬁ .
a
b
0.0 9.46, 14.00 16.71 17.67 18.03
(0.0) (0.0} {0.0) (0.0) (0.0)
0.5 9.73 116 16.88  17.85 18.21
(14.4/ (5.2/ (0.0) (0.0) (0.0)
-30.0) -15.8)
1.0 12.67 18.53 21.91 23.09 23.53
(45.0/ (45.0/7 (45.0/ (45.0/ (45.0/
~-45.0) -45.0) -45.0) -45.0) -45.0)
2.0 22.55 38.93 56.62 67.50 72.84
(68.6/ (75.6/ (84.8/ (90.0) (90.0)
-61.4) -60.0) -74.2)
4.0 44.57 85.46 151.79 224.56 89,20
(8t.0/ (85.2/ (90.0) (90.0) {90.0)
-17.2) ~78.6) )
8.0 89.04 176.19 340.18 509.10 1154.80
{90.0) (90.0) (90.0) (90.0) (90.0)

. A single angle applies to all layers.
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TABLE 2: Maximum fundamental eigenfreqiency and optiwﬁ fiber orienta=
'tions in degrees of a Tour-Tayered angle-ply plate made of
materfal 11, with hi: = 0.25, k=1,2,3,4,

g 5 10 20 %0 w
2
b
0.0 8.2 , 11.67 13.46 14.05  14.2
(0.9) (0.0) (0.0) (0.0) (0.0)
0.5 8.40 11.83 13.64 14.24 1446
{0.0) (0.0 (0.0) (0.0) (0.0)
1.0 10.12 " 14.83 17.55 18,50  18.p¢
(45.0/ (45.0/ {45.0/ (45.0/  (45.0/
-45.0) -45.0) - -45.0) ~45.0)  -45.0)
2.0 19.59 33.61 47.32 54.56  57.83
(87.8/ (90.0) (90.0) (%0.0)  (90.0)
-86.0)
4.0 44,29 76.86 132.72 187.27 223,94
(90.0) (90.0) (90.0) ©(90.0) - (%0.0)
8.0 81.02 160.08 306.14 529.38  913.57
(90.0) {90.0) {90.0) - (90.0) " (90.0)

. A single angle applies tn al} layers,

-~
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Maximum fundamental eigenfrequencies, optimum fiber ortentations

TABLE 3:
and 2(3) = -z(1) coordinates of a four layered angle-ply plate
mide of material }§
2 5 10 20 ] .
h
8
b
0.0 9.88 14,19 IS P e
(25.9/ {16.0/
-17.7, -10.2,
0.38) 0.39)
1.0 13.00 19.59 23.73 25.2% 25,82
(45.0/ (45.0/7 {45.0/ (45.0/ {45.0/
-45.6, -45.0, -45.0, -45.0, -45,0,
0.35) 0.35) 0.35) 0.35) 0.35)
2.0 22.80 39.52 56.77 e [
(59.4/ (64.1/ (74.0/
-73.3, -72,3, -79.8,
0.39) 0.38) 0.39)
4.0 44.72 85.77 e e s
(64.3/ (67.6/
-85.2, -88.7,
0.45) 0.44)

#+« The values-are the same as those given in Table I and the 2(3) = - 2(1)

coordinate has no effect on the value of w




TABLE 4: The values of the fundamental (mn),

order frequencies of an optimal four-

of material | subject to constraints on the second (w

24

third («33) order frequencies, with a/h = 10.0

second (m2) and third (m3)
layered angle-ply plate

2,) and/or

2.1y (3.1

Constraints Eigenfrequencies Optimum fiber orientations
51? —"-‘;. "y y wy 91 0?
r=1
24.0 - 18.53 35.06, '35.06 45.0 -45.0
. (1.2) {2,1)
24,0 7.0 16,24 32.29 37.00 36.7 -35.8
’ (L2)  (2,1) .
24.0 38.0 16,43 24.71 38.00 15.1 ~32.7
(L2) (1,3)
r=2
4.0 - 38.79 4400 5269 80.3 -56.5
(2,1) (3,1) .
4.0 58.0 38.64 46.62 58.00 69.3 -50.0

*

The numbers in parentheses denote {m,n).
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TABLE 5: Maximum separations between first and second (m? = w,)and.
second and third (m3 - mz) order eigenfrequencies of a four-
Yayered angle-ply of material I, with a/h = 10.0,

Objective TV u, wy w, - Wy wy - w,
rs=1l
W, = o 18.53 35.06, 35.06 16.53 0.0
(1,2)" (2,1)
(ﬂ1 = 45.0, 8, = - 45.0) )
uy -, 14.74 22,86 137.35 8.12 14,48
(1L,2) (1,3)
. (2,1)
(01 = 0.0, e, = ~ §5.8)
ra=2
wy =, 19.21°  40.90 43.94 21.70 3.04
H{2.1)  (1,2)
(01 =6,= O.Q)
w - w, © 29.97  45.98 67.04 16.02 21.06
: (2,1) (3,1 ’
(1,2
(8, = 23.9, 0, = - 55.4)
« The numbers in parentheses denote (m,n).
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Efficiency curves plotted acainst the aspect ratio for laminates

- made of material I, with ‘K=4.

Efficiency curves plotted against the aspect ratio for la:ﬁinates

made of materfal II, with K=4,

Percent decrease in maximum v, due to shear deformation plotted

against the aspect ratio, with Ke4,

Difference in the efficiencies of four-layered laminates of

material 1 optimized with respect to (Ol,ﬂz.hi) and (01,0,,).

Efficiency curves plotted against the side-to-thickness ratio

for laminates with two, four and six layers.

Efficiency curves plotted against EL/ET ratio for laminates of

material I, with K-4,
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